Pular para o conteúdo
Início » Qual é o MMC de 130 e 120?

Qual é o MMC de 130 e 120?

Resposta: O Mínimo Múltiplo Comum de 130 e 120 é 1560

Método(s) de Cálculo

Como Identificar o MMC de 130 e 120 usando a Fatoração Prima

Uma forma de encontrarmos o MMC de 130 e 120 é começar comparando a fatoração prima de cada número.

Aqui temos a fatoração prima de 130:

21 × 51 × 131

E esta é a fatoração prima de 120:

23 × 31 × 51

Ao compararmos a fatoração prima desses dois números, devemos procurar a potência mais alta à qual cada fator primo é elevado. Neste caso, existem os seguintes fatores primos a serem considerados: 2, 5, 13, 3

23 × 31 × 51 × 131 = 1560

Com este resultado ficamos a saber que o MMC de 130 e 120 é 1560.

Como Identificar o MMC de 130 e 120 usando os múltiplos comuns

O primeiro passo para este método de encontrar o Mínimo Múltiplo Comum de 130 e 120 é começar por listar os múltiplos de cada um desses algarismos.

Se precisar saber quais os múltiplos de determinado número, use a caixa de pesquisa acima e digite um deles (de cada vez): 130 e 120:

Vamos dar uma vista de olhos nos primeiros 10 múltiplos de cada um deles, 130 e 120:

Os primeiros 10 múltiplos de 130: 130, 260, 390, 520, 650, 780, 910, 1040, 1170, 1300

Os primeiros 10 múltiplos de 120: 120, 240, 360, 480, 600, 720, 840, 960, 1080, 1200

Podemos continuar a listar os múltiplos pelo tempo necessário até encontrarmos uma correspondência. Depois de idenfificarmos uma ou várias correspondências, a menor delas será o Mínimo Múltiplo Comum. Por exemplo, o(s) primeiro(s) múltiplo(s) correspondente(s) de 130 e 120 são 1560, 3120, 4680. Como o número 1560 é o menor da lista, esse será o mínimo múltiplo comum.

O MMC de 130 e 120 é 1560.

A abreviação MMC significa ‘Mínimo Múltiplo Comum‘. O mínimo múltiplo comum de dois números é o menor número possível que pode ser divisível por ambos os números. Entenda que o MMC também pode ser calculado para mais de dois números. Também é possível saber o MMC usando expoentes, através do método da escada, divisão, Máximo Fator Comum, ou usando diagramas de Venn.

Vídeo Educativo:

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *